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I. Motivation
Building an accurate training database is challenging in su-
pervised classification. Radiologists often delineate malig-
nant and benign tissues without access to the ground truth,
thus leading to uncertain datasets. We propose to deal
with this uncertainty by introducing probabilistic
labels in the learning stage [1]. We introduce a proba-
bilistic support vector machine (P-SVM) inspired from the
regular C-SVM formulation allowing to consider class la-
bels through a hinge loss and probability estimates using
ε-insensitive cost function together with a minimum norm
(maximum margin) objective. Solution is used for both de-
cision and posterior probability estimation.

II. Problem formulation
Let (xi, li)i=1...m be the learning dataset of input vectors
(xi)i=1...m ∈ X (the feature space) along with their labels
(li)i=1...m, such that

• class labels: li=yi ∈ {−1,+1} for i = 1 . . . n
(certain labels),

• real values: li=pi = P(Yi = 1 | Xi = xi) ∈ [0,1] for
i = n+ 1 . . .m (uncertain labels).

III. Problem solution

Let k be a positive kernel satisfying Mercer’s
condition and H the associated reproducing
kernel hilbert space. We propose the P-SVM
pattern recognition problem [1]
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Following the idea of soft margin introduced
in regular C-SVM, slack variables ξi mea-
sure the degree of misclassification of the da-
tum xi. C and C̃ ∈ R∗ control the relative
weighting of classification and regression per-
formances. Let ε be the labelling precision, δ
be the confidence in the labelling and η = ε +
δ. The regression problem consists in finding
optimal f such that

| 1

1 + e−a(f(xi)+b)
− pi |< η ,

thus constraining the probability prediction
for point xi to remain around to 1

1+e−a(f(xi)+b)

within distance η [2, 3, 4]. This leads to
z−i =− 1

a ln( 1
pi−η

− 1) and z+
i =− 1

a ln( 1
pi+η

−1)

Note that regular C-SVM is often associ-
ated with Platt’s scaling algorithm [5] to es-
timate class probability membership whereas
P-SVM makes it possible to directly estimate
probabilities as P (y = 1|x) = 1

1+e−a(f(x)+b) .

DUAL FORMULATION
Lagrange multipliers allow to rewrite the
problem in its dual formmin
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, with

K1 = (yiyjk(xi, xj))i,j=1...n

K2 = (k(xi, xj)yi)i=1...n,j=n+1...m

K3 = (k(xi, xj))i,j=n+1...m

The dual formulation is in the classical SVM
form and is thus easy to implement.

V. Toy example
C-SVM versus P-SVM : performances are evaluated by computing the Accu-
racy (Acc), Kullback-Leibler distance (KL), Alignement (Align) and Mean
Cross-Entropy (MCE). Implementation uses the SVM-KM Toolbox [6].

PROBABILITY ESTIMATION AND NOISE ROBUSTNESS

We generate two N (µ, σ) 2D datasets, labelled ’+1’ and ’-1’ and compute
the true ’+1’ class membership probability P (yi = 1|xi) for each xi of
the learning data set (n=100). To simulate classification error, we add a
uniform noise (amplitude 0.1) to probabilities, such that, for i = 1 . . . n,
P̂ (yi = 1|xi) = P (yi + 1|xi) + δi. Learning data are labelled in two ways :

1) Dataset (xi, yi)i=1...n, used to
train C-SVM. For i = 1 . . . n,

l if P̂ (yi=1|xi)>0.5, then yi=1,
l if P̂ (yi=1|xi)≤0.5, then yi=−1

2) Dataset (xi, y̆i)i=1...n, used to
train P-SVM. For i = 1 . . . n,

l if P̂ (yi=1|xi)>1−η, then y̆i=1,
l if P̂ (yi=1|xi)<η, then y̆i=−1,
l otherwise y̆i=P̂ (yi=1|xi).

0
.5

0.5

0.5

0.5

P−SVM probability estimates

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5

0.5

0.5

0.5

True probabilities

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
.5

0.5

0.5

0.5

C−SVM + Platt probability estimates

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability estimations of P-SVM (left) and C-SVM (right) over a grid using noisy
learning data, plotted in blue (class ’-1’) and red (class ’+1’) stars

P-SVM classification and probability estimations obtained for 1000
test points are clearly more alike the ground truth (AccP-SVM=99%,
KLP-SVM=3.6) than C-SVM (AccC-SVM=95%, KLC-SVM=95). C-SVM is
sensitive to classification noise (no more convergence to the Bayes rule).

VI. Clinical data
Database :
l Multiparametric MR images of the prostate acquired on 49 patients
l 350 regions of interest delineated and scored by experts using a 5-level scale
of confidence from 1 = definitely malignant to 0 = definitely benign.
l Gold standard = Prostatectomy specimens (analysed a posteriori).
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Prostate MRI : axial T2-weighted, DCE (after Gd-injection) and ADC MR images to-
gether with the corresponding histology slice. Histologically assessed cancers (A and B)
were outlined on MR images (score 0.75 and 1 respectively) as well as a suspicious tissue
(scored 0.25)

Objective : We compare the performances obtained using a P-SVM trained
on expert’s scores to those obtained using regular C-SVM trained on the
same binarized database (i.e. score > 0.5 ⇒ malignant, benign otherwise).

Evaluation : Performance achieved by both C-SVM and P-SVM using :

1) the expert’s scores both as the training labelling and testing reference,
thus assuming that the histologic ground truth is unknown.

2) the expert’s scores as the training labelling and histology as the testing
reference, thus evaluating if an expert’s score-based database is accurate
enough to predict true data class, thus possibly avoiding the tedious histol-
ogy analysis.

3) the histology gold standard both as training labelling and test reference.

Leave-One-Patient-Out cross-validation using optimal parameters in [7].

Evaluation on expert’scores on ground truth
AUC KL Alignt MCE AUC KL Alignt MCE

P-SVM .89 41 .25 .31 .86 73 .32 .33

C-SVM .85 76 .31 .38 .82 118 .38 .43

P-SVM/C-SVM learning on ground truth .86 77 .31 .35

P-SVM systematically outperforms the classical C-SVM approach whatever training and
testing database is used

Conclusion
Training data used for computer-aided systems
design often rely on expert’s annotations, con-
sidered as the ground truth. Expert’s uncer-
tainty is rarely considered. We show that includ-
ing these uncertainties into the learning step via
P-SVM balances their influence and allows better
predictions than those achieved with C-SVM.
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